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Abstract—Two-dimensional laminar free convection in air contained in a long horizontal right-triangular
enclosure has been investigated using numerical techniques. Steady-state solutions have been obtained for
height-base ratios of 0.0625 < H/B < 1.0 for Grashof number of 800 < Gr 5 < 64 000. Results show that
heat transfer across the base wall increases towards the hypotenuse/base intersection such that the third of
the base length nearest the intersection accounts for about 60% of the heat transferred across the base. Results
are well correlated by
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for 0.0625 < H/B < 0.25.

NOMENCLATURE

arbitrary constant;

base of triangular enclosure;

arbitrary constant ;

arbitrary constant ;

specific heat at constant pressure;
neighbourhood length energy transport
index ;

general variable ;

gravitational acceleration ;

Grashof number,

gfBXT — T, )

modified Grashof number,

g.BBa(Th.w - Tc.w)/vl;

height of triangular enclosure;

thermal conductivity of fluid;
hypotenuse of triangular enclosure ;
coordinate tangential to wall,
coordinate normal to wall;

local Nusselt number for isothermal wall
situation ;

mean Nusselt Number for isothermal
wall situation;

local Nusselt number for constant heat
flux situation;

mean Nusselt number for constant heat
flux situation;

pressure;

Prandtl number, uc,/k;

heat transfer rate;

mean heat transfer rate;

local wall heat transfer rate;
temperature;

c,w?

cold wall temperature;

hot wall temperature ;

mean temperature;

velocity component in x-direction;
dimensionless velocity component in x-
direction, uB/v;

velocity component in y-direction ;
dimensionless velocity component in y-
direction, vB/v;

subscript, for wall value;

independent coordinate in horizontal
direction;

transformed x coordinate, x/B;
independent coordinate in vertical
direction;

transformed y coordinate, y/B.

Greek symbols
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thermal diffusivity, k/pc,;

fluid coefficient of cubical expansion;
fluid density;

ratio q/k;

stream function;

dimensionless stream function, y//v;
dimensionless temperature,

(T - Tc‘w)/(Th.w - Tc‘w);
isothermal case;

dimensioniess temperature,

(T — T)/(By);

constant heat flux case;

vorticity ;

dimensionless vorticity, B2w/v;
kinematic viscosity of fluid;
dynamic viscosity of fluid.
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INTRODUCTION

THE PRESENT paper pertains to the natural convection
flow in a right-triangular cavity with a horizontal base
and heat input through the hypotenuse. The work has
been motivated by the heat transfer problem as-
sociated with air-conditioning load calculations for
pitched roofs with horizontal suspended ceiling. Also
relevant is the heat transfer problem associated with
roof-type solar stills and various other engineering
structures. In spite of its obvious engineering impor-
tance, this problem has not been given the attention it
deserves and air-conditioning calculations involving
such configurations have had to be based on published
data on pitched roofs with ceilings following the roof
contours. The present work aims at obtaining the
various heat and flow parameters for such enclosures
as described above. Results are presented for the
laminar-flow regime only with the added simplifi-
cations that the temperature of the heat source (the
hypotenuse) is constant or that the heat input rate is
constant. It has also been assumed that the cavity is
isosceles-triangular in section so that the common
boundary, the normal height of the section, can be
taken as adiabatic. Perhaps the closest configuration
to the present one is that of the rectangular cavity
which has been studied by several authors. Theoretical
investigations of laminar, natural convection in such
enclosures have been undertaken by several authors
including Batchelor [1], Elder [2], de Vahl Davis [3]
and Newell and Schmidt [4] while results of experi-
mental studies have been published by other investi-
gators such as Elder [5] and Yin et al. [6]. Pnueli [7]
examined the thermal instability in confined fluids in
cylindrical enclosures while Hollands [8] investigated
that in rectangular enclosures with honeycomb con-
straint. Comprehensive reviews of various works on
natural convection in closed cavities have been pub-
lished by Ostroumov [9], Eckert and Carlson [10] and
Wilkes [11]. In view of the differences in geometry of
the enclosures and the methods of heat input, the
results of the above authors do not lend themselves to
easy interpretation of the processes involved in the
present problem.

Physical model

Before obtaining solutions to the various con-
servation equations associated with the problem, it is
essential to define a physical model of the problem.
Such a model will usually be different from the real
problem, but the differences should be such as not to
mask the important physical processes associated with
the problem.

The model adopted for the present work is that of a
2-dim. enclosure with a right triangular cross-section
(Fig. 1). Fluid motion is set up by heating the
hypotenuse which may be deemed as representing the
pitched roof while cooling the horizontal base which in
turn represents the suspended ceiling. The third side,
the vertical height, is assumed to be adiabatic and
hence can be said to represent the boundary between

V. A. AKINSETE and T. A. COLEMAN

the two identical halves of the isosceles triangular
cavity. Two situations are considered depending on the
conditions stipulated at the hot wall (the hypotenuse).
These are

Case I. The hot wall is isothermal.
Case II. There is constant heat flux through the hot
wall.

For Case (I), the cold wall (the horizontal base) is
assumed to be isothermal, while for Case (I1), constant
rate of cooling is assumed on this wall.

ASSUMPTIONS AND GOVERNING EQUATIONS

The assumptions made for the ensuing analysis are
as follows:

(1) The flow is laminar and 2-dim.

(2) Viscous dissipation can be neglected.

(3) No internal heat source or sink is involved.

(4) The fluid is Newtonian.

(5) Fluid properties are constant except in the
formulation of the buoyancy term.

(6) Compressibility effects are negligible.

From Fig. 1 and by invoking the above assumptions,
the basic conservation laws of mass, momentum and
energy can be written in the following dimensionless
forms:

Temperature field equation

20 00 ® 00
L A A TR I
ox? * ay? '[Uax * ay] M

Vorticity field equation

’Q  8Q oQ oQ 00
— At —=U—+4+V——Grp-— 2
axr Ty T Dax Y ey TVeay @
Stream function field equation

GRS SR

—t+t—5=-Q 3
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Velocity field equations
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Cold wall
B |

F1G. 1. Physical model.
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and
ov
Vs -
1754 )
Boundary conditions
Velocities. On all the walls
Uw — Vw = Q. (6)
Temperature, On the adiabatic wall
a8
x|, =0 %)
On the horizontal wall,
Case (I) (Isothermal)
0,=0 ®)
Case {II) (Constant heat flux):
o8
- - t
x|, constan %)

On the inclined wall,
Case (I) (Isothermal):

0,, =1 (10)
Case (II) {Constant heat flux):
Z—g = constant (11)
Stream function. From equations (4)-(6)
oV oV
| =-——| =0 2
ON|, M|, 0 (12)

It follows that ¥, is constant on all walls. Without
any loss of generality, ‘¥, is set to zero

ie. ¥,=0 (13)

Vorticity. No explicit boundary conditions can be
specified for Q. However, at any step in the iterative
process employed in solving the system of equations,
values of U and V obtained from the solution of
equations (4) and (5) are used to estimate £ from the
equation relating vorticity and velocity derivatives. In
dimensionless form, this equation becomes

v U

i (14)

This method has been employed by Aziz and Hellums
[12] and Newell and Schmidt [4]. The latter authors
reported that the use of this method results in relatively
small truncation errors while yielding reasonably
stable results.

Finite-difference representations of the differential
equations

In order to obtain solutions to the system of
equations by numerical methods, each of the govern-
ing differential equations is replaced with its finite
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difference representation. To achieve this, the entire
triangular region is divided into a mesh system with
equal numbers of divisions in the X and Y directions.
This ensures that the hypotenuse lies on grid in-
tersections. The finite difference representation is then
applied to the nodes of the mesh system.

Central differehce representations are used for equa-
tions (1)-(3), yielding three sets of implicit non-linear
simultaneous difference equations. In addition, the
replacement of equations {4) and (5) with central
difference representations results in two sets of explicit
equations. The five equations have to be satisfied
simultaneously by the required solutions.

Representations for regions adjacent to the walls
where the condition df/0N = 0 holds are separately
developed using a method outlined by Newell and
Schmidt [4]. The representation for the estimates of
boundary vorticity was similarly treated. Considering
the inclined wall as an ‘irregular’ boundary, repre-
sentations for these conditions at this wall are de-
veloped by making use of direction cosines and ap-
proximations for normal derivatives on this boundary.

Nusselt numbers

The energy transported across the horizontal wallis
expressed in terms of local and mean Nusselt numbers.
The Nusselt numbers defined for the horizontal wall
are

Case I (Isothermal):

Local Nusselt Number,

o0
N“(m—a—gho (15)
Mean Nusselt Number,
— 1 (%26
Nug=—=1 —
Uep BL 3y Y:odx (16)
Case (II) (Constant heat flux)
Local Nusselt Number,
, 1 |06
NH(B} = [@;:]5;’ oo (l?)
Mean Nusselt Number,
— 1 (B
Nu(,,,=-—Jv Nugg dX (18)
B Jo

The integrations in equations (16) and (18) were
performed using the Trapezoidal Rule.

Method of solution of difference equations

The finite difference representations of normalized
equations (1)-(3) were solved by an iterative scheme
following a cyclical sequence. First, the representation
of equation (1) was solved for 0, treating U and V as
known functions. Initially, test values (U = 0 and V
= 0) were assigned and the iteration carried out until
the solution converged subject to the satisfaction of a
convergence criterion.
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The second stage involved the solution of equation
(2) for Q, using the values of f obtained in the first stage
and the initial values of U and V. Initially, an arbitrary
boundary distribution was used for Q. This arbitrary
distribution was replaced in the next cycle of iteration
by estimates of Q obtained by using the estimates of U
and V from equation (14). The third stage in the
iteration involved the solution of the representation of
equation (3) for ‘¥ using the values of Q obtained from
the previous stage. The method of iteration here was
similar to those of the first two stages, the boundary
condition used being ¥ = 0.

The explicit representations of equations (4) and (5)
were finally solved for U and V, using the most recently
obtained ¥ distribution.

This completed the first phase of the iterative
operation. Next, the values obtained in the first
operation were used to repeat the entire operation for
the second cycle thus obtaining new distributions for 0,
Q, ¥ etc. The operation was repeated until the desired
accuracy was achieved. This accuracy was assessed in
terms of the invariability of each field at the end of two
successive cycles. For practical purposes, each field
was considered invariable if the absolute values of the
difference between field values for two successive cycles
were less than 1074,

The above calculations were carried out for each of
the two cases described above.

A Gauss-Seidel iteration routine was used to solve
the sets of implicit equations and a WATFIV com-
puter program was written to execute all the required
calculations.

For each set of cavity ratio and Grashof number,
calculations were carried out with the triangular
region divided into a grid system having equal incre-
ments in both the X and Y directions. Initially,
computations were carried out for ten equal incre-
ments in both the X and Y directions (11 x 11 mesh).
Subsequently, in order to investigate the validity of the
solutions, as well as to examine the effect of changing
mesh sizes, the calculations were repeated for a 17 x
17 mesh i.e. sixteen equal increments in both the X and
Y directions. Results in this work have been presented
from the 17 x 17 mesh.

Curve of approach

F1G. 2. Conditions near point of singularity.
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Point of singularity, X =1

It will be seen that the point of intersection of the hot
and cold walls of the triangular enclosure is a point of
singularity introduced by having different tempera-
tures on the two intersecting walls. The conditions in
the neighbourhood of this singularity are illustrated in
Fig. 2. As this point is approached, the difference
representation of the derivative (60/¢ Y}\,»:O used for
evaluating the Nusselt numbers in equations (15)-(18)
no longer applies near the boundary since there are no
mesh points near this wall and close to the singularity.
The use of this representation does not therefore
permit the limiting value of the Nusselt number to be
determined as the singularity is approached.

The method used in the present study to determine
the limiting value of Nu,g, is similar to that outlined by
Collatz [14]. By this method, the singularity S** (Fig.
2) is approached from the hot and cold walls simul-
taneously along the curve of approach represented by a
parabolic profile described by a temperature relation
of the form

®=AY>+BY +C (19)

and passing through the three wall nodes closest to the
singularity. The constants A, B and C in equation (19)
are determined by using the values of 8(0%¥, 0} and
0%¥) and the corresponding mesh values of Y(0, AY,
and 2AY respectively, where AY is the mesh spacing in
the Y-direction) at the three nodes.

The next step is to solve for a parabolic spatial
relation of the form

X=DY*+EY +G (20)
which also describes the curve, and finding the con-
stants D, E and G by using the three values of X(X ¥,
X*¥* and X3*) at the three wall nodes close to the
singularity along with their corresponding Y values (0,
AY and 2AY respectively).

A medial line is now projected from the singularity
to intersect the curve at a point P** very close to the
singularity and tending to coincide with it as the mesh
divisions become progressively smaller. The value of
Nugg, at P** is taken to be the required limiting value
corresponding to the singularity for any given mesh
system. The medial line can be represented by an
equation of the form

X =QY +R (21)
where Q and R are constants determined by using the
conditions that Y = O when X = B,and X = 0 when
Y = H/2 (B and H represent the base and the height if
the cavity respectively). The line and curve make an
intercept at the position P** at which the value of Y
makes equations (20) and (21) identical. If this value of
Y is Y**, then the required limiting value of Nuy, is
obtained by taking the derivative (06/3Y) of equation
(19) and substituting Y** into the result of the
differentiation.
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The resulting relation is of the form

=0Y** + ¢ (22)

where 8 and ¢ involve the quantities 6%, 05*, 0%, and
AY,while Y** is the quadratic root involving AY, X ¥*,
X%* B and H and having a value less than AY.

DISCUSSION

The results presented are for Pr = 0.733 and for
Gr g, covering the range 800-64 000. The ratios of
height-base considered are 0.0625 < H/B < 1. The
mesh system constructed for finite difference discreti-
zation consisted of mesh lines that made grid in-
tersections on the hypotenuse of the triangular region.
Equal intervals along the X and Y axes were used for
all the ratios considered. This further implied that the
total numbers of divisions along the X-axis, Y-axis and
the inclined wall were always equal for any number of
mesh divisions. Finally, the system employed made the
ratio AY/AX equal to H/B for all cases which con-
siderably simplified computational problems. Results
obtained for the two cases of isothermal hot hy-
potenuse and cold base [Case (I)] and constant heat
input rates on the hypotenuse [Case (II)] show close
similarities in many aspects.

An indication of heat transported across the hori-
zontal base wall of the triangular region is shown in
Fig. 3. The local Nusselt number Nu g, increases to a
definite value at the intersection between the base wall
and the inclined wall.

The high values of Nu 5, near the intersection give an
indication that a given region within the neigh-
bourhood of this intersection accounts for more than a
proportionate amount of heat transported across the
base wall. This indication is supported by reference to
Fig. 4 which shows the percentage heat transport for a
neighborhood length A, defined as the third of the
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F1G. 3. Local Nusselt number vs X.
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F1G. 4. Neighborhood length energy transport index vs H/B.

length of the base wall nearest the intersection. For this
length, a neighborhood energy transport index, E, is
defined, and is computed by integrating the local
Nusselt numbers over 4 and expressing this integral as
a percentage of the integral of Nu g over the entire base
wall. It is seen that for the cases of H/B ratios
considered this neighborhood length accounts for
more than 60% of the heat transported across the base
wall.

The practical significance of this result is that the
heat transported across the base can be most effectively
extracted by placing a heat extraction device at a
position very close to the region specified by . The
comparative curve shown for the constant heat flux
case in Fig. 4 shows only a slight drop in E,.

40

—e—e— Grg 4000
+=0-<0=: Grg,= 16000
~a——a— Gr gz 64000

Nu(g)

FIG. 5. Mean Nusselt number vs H/B for isothermal hot wall.
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F1G. 6. Mean Nusselt number vs Grashof number.

An example of the variation of the mean Nusselt

number Nu,g with H/B is shown in Fig. 5. For a given
Grashof number, increasing the height/base ratio gives
rise to sharp drops in the amount of heat transported
across the base wall. This result is to be expected
because most of the heat transfer across the base wall
occurs near the intersection between the base and the
hypotenuse: hence increasing the height of the region
does little to increase the total heat transferred. It
follows that in practice, for a given Grashof number
{characterising the thermal condition imposed on the
hot wall), the higher the H/B ratio, the less the heat
transferred across the base wall.

e Gl )7 4000, 16000
— = Gy 64000

© 00000 q
R

{a)

woo
Giag

— Gf;af 2000
——— Grg;= 8000

(b)

FiG. 7(a). Isotherms for H/B = 0.25 for isothermal case. (b).
Isotherms for H/B = 0.25 for constant heat flux case.
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F1G. 8. Streamlines for H/B = 0.25.

The variation of the mean Nusselt number ﬁt:(m

with Gr y, is shown in Fig. 6. Nu 5, changes very slightly
with Gr over most of the ranges of Grashof numbers
considered. It is observed that these changes are more
pronounced for higher H/B ratios than for lower
ratios.

The effect of Grp, on the steady state dimensionless
temperature distribution ¢ is shown in Fig. 7{a).
Isotherm maps for the entire triangular region for
which H/B = 0.25 are displayed for three values of
Gr g The isotherms emerge normally from the adia-
batic wall and converge towards the intersection of the
hypotenuse and the base wall. At a relatively low Gr g,
of about 4000, the effect of convection on the isotherms
isminimal. When Gr g, is increased to about 16 000, the
change in the isotherms is hardly noticeable. This
situation is similar to that of pure conduction. Notice-
able changes in the isotherms begin to take place only
for relatively high values of Grashof number. As an
example, for Gr g, of 64 000, the effect of the adiabatic
wall extends into the region of the enclosure near the
central section. The isotherms are pushed towards the
hot wall for approximately the first quarter of the
width of the enclosure nearest the adiabatic wall. For
the remaining distance, the isotherms are pushed
downward towards the cold wall. This pattern of the
temperature field bears some similarity to two boun-
dary layer formations, one growing downward along
the hot wall, and the other growing upward towards
the insulated wall along the base wall. The sudden
depression of the near-middle sections of the iso-
therms indicates the possibility of separation occurring
in the primary flow around these sections. Figure 7(b)
shows corresponding isotherm maps for the constant
heat flux situation [ Case (I1)]. Here, isotherms leave as
normals to the adiabatic wall and end up on the
inclined wall. An indication of the sensitivity of the
stream lines to changes in the Grashof number is
shown in Fig. 8. Stream-lines of specified strength tend
to recede towards the walls of the enclosure as Gry is
raised. It is observed that stream-lines of relatively
greater strengths are centred around that portion of
the enclosure where the sudden depressions of iso-
therms occur.

In order to obtain a correlation between Nu,g, Gr p,
and H/B, sets of 3-dim,, linear, logarithmic simul-
taneous equations were solved by making use of Fig. 5
for an expression of the form
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Nug, = c[Gr]* (H/BT".

The above form was obtained from a dimensional
analysis using the concepts of Vector Lengths. The
resulting expression is

Nugg = 1.102 [Gr]°*35 [H/B] ™! 1°

This correlation holds reasonably well for H/B ratios
0f0.0625 < H/B < 0.25 and Grashof numbers over the
range 4000 < Gr < 64 000. This result shows the
high influence of the parameter H/B and the lesser

influence of Gr gz on Nu g, for equivalent changes in the
two parameters, a deduction which has already been
mentioned from other observations.

For a proper evaluation of the results presented, an
investigation was made of the effect of changing grid
sizes on the numerical solutions. Newell and Schmidt
[4] and Azis and Hellums [12] have noted that
refinement of grid sizes tends to cause changes in the
Nusselt number. For example, in going from 11 x 11
mesh to 41 x 41 mesh, Azis and Hellums reported a
change of 409 in the Nusselt number.

The present work tends to agree with the assertion
of Newell and Schmidt that, among other things, the
mesh size and the order of the finite difference approxi-
mation significantly influence the accuracy of the
Nusselt numbers. In this work, it was observed that in
goingfrom 11 x 11 meshto17 x 17 mesh there wasan
increase of about 119 in the value of the Nusselt
number. The refinement of grid sizes also tended to
increase the number of iterations required to achieve
convergence for each field.

CONCLUSIONS

Analysis has been carried out for heat transfer by
steady, laminar, free convection in a triangular en-
closure. It has been found that a considerable pro-
portion of the heat transfer across the base wall of the
region takes place near the intersection of the base and
the hypotenuse. The relationship between the mean

Nusselt number, N_u( gy the Grashof number, Gr g, and
the height-base ratio, H/B, is such that for equivalent

changes in Gr g, and H/B, the influence of H/B is the
considerably higher factor. The two cases examined,
namely isothermal hot wall and constant heat flux
situations, show close similarities in several respects.
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TRANSFERT THERMIQUE PAR CONVECTION NATURELLE PERMANENTE DANS DES
ENCEINTES TRIANGULAIRES

Résumé—On étudie par voie numérique la convection naturelle bidimensionnelle, laminaire dans I'air con-
tenu dans une enceinte longue, horizontale 4 section droite en triangle rectangle. Des solutions permanentes
sont obtenues pour des rapports hauteur sur base 0,0625 < H/B < 1,0 et pour un nombre de Grashof
800 < Gr g, < 64 000. Les résultats montrent que le transfert thermique 4 travers la base augmente vers 'aréte
commune 4 I'hypoténuse et la base, si bien que le tiers de la base vers cette aréte compte pour 609, de la
chaleur totale transférée. Les résultats sont bien représentés par:

Nugg, = 1,102[Gr ]° 0325 [H/B] "' *°
pour 0,0625 < H/B < 0,25.
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WARMETRANSPORT BEI STATIONARER LAMINARER FREIER KONVEKTION IN
DREIECKIGEN HOHLRAUMEN

Zusammenfassung—Es wurde zweidimensionale laminare freie Konvektion in Luft numerisch untersucht,
die in einem langen, horizontalen, rechtwinklig-dreieckigen Hohlraum eingeschlossen ist. Lsungen fiir den
stationdren Zustand wurden fiir Verhiltnisse von Hohe zu Grundseite im Bereich von 0,0625 < H/B < 1,0
und Grashof-Zahlen im Bereich von 800 < Gr j,, < 64 000 erhalten. Die Ergebnisse zeigen eine Zunahme des
Wirmetransports durch die Wand der Grundseite zum Schnittpunkt von Hypotenuse und Grundseite hin,
so daB das dem Schnittpunkt ndchstliegende Drittel der Grundseitenlidnge mit 60%, zu der an der Grundseite
tibertragenen Wirme beitrdgt. Fiir den Bereich von 0,0625 < H/B < 0,25 werden die Ergebnisse gut
korreliert durch die Gleichung

Nug, = 1,102 [er)]ons;s (H/B]~ .

TEIJIONEPEHOC PU CTALLUOHAPHOW JIAMUHAPHON CBOBOJHOMN
KOHBEKHHUH B TPEYTOJIBHBIX MOJOCTAX

Aunoranus — UHMCIEHHLIMEY METOJAMH HCCICAYETCs ABYMEPHas JlaMMHapHasi CROOONHAS KOHBEKLMSA
B cofiepXkalledl BO3yX JUIKHHON rOpH3OHTAJIBHOMH NONOCTH, HMeolel ceyeHne B GopMe mPIMOYrob-
HOro TpeyrosbHuka. ITosydeHbl cTauHOHAPHbIC PEUICHHS IS OTHOLUEHHH BLICOTEI TPEYTOJbHHKA K
ocHoBanuio B auanasone 0,0625 < H/B < 1,0 npu 3Hauenusx umcna Tpacroda 800 < Gry < 64 000.
Pe3ybTaThl MOKa3BIBAIOT, YTO IUIOTHOCTH TEMJIOBOTO [OTOKA 4Y€pe3 OCHOBAHME BO3PACTAET MO HAa-
NPAaBJICHHIO K MECTY NIEPECEYEHUS MMIOTEHY3bl C OCHOBAHHEM, TAK YTO Ye€pe3 TPETh JJIMHbI OCHOBAHHA,
PacronoXeHHOH BO3Jie TepeceyeHUs, MPOXOAMT NpPHUMEpHO 609, Temia, NEPeHOCHMOrO uepe3 Boe
OCHOBaHHE. Pe3ysIbTaThl XOPOUIO ONMCHLIBAIOTCS COOTHOLIECHHEM

Nuig = 1,102[Gr g, 1°°*3*[H/B]***
npr 0,0625 < H/B < 0,25.



