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Abstract-Two-dimensional laminar free convection in air contained in a long horizontal right-triangular 
enclosure has been investigated using numerical techniques. Steady-state solutions have been obtained for 
height-base ratios of 0.0625 < H/B < 1.0 for Grashof number of 800 Q Gr,, < 64 @OO. Results show that 
heat transfer across the base wall increases towards the hypotenuse/base intersection such that the third of 
the base length nearest the intersection accounts for about 60% of the heat transferred across the base. Results 
are well correlated by 

EL,@ = 1.102 [Gr,r,,]0.0535 [H/B]-1.19 

for 0.0625 < H/B < 0.25. 
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NOMENCLATURE 

arbitrary constant ; 
base of triangular enclosure ; 
arbitrary constant; 
arbitrary constant; 
specific heat at constant pressure ; 
neighbourhood length energy transport 
index ; 
general variable ; 
gravitational acceleration; 
Grashof number, 

gBB3(T - Tc,,M2; 
modified Grashof number, 
gPB3(T,,, - T,,J/v2; 
height of triangular enclosure; 
thermal conductivity of fluid; 
hypotenuse of triangular enclosure; 
coordinate tangential to wall; 
coordinate normal to wall ; 
local Nusselt number for isothermal wall 
situation; 
mean Nusselt Number for isothermal 
wall situation ; 
local Nusselt number for constant heat 
flux situation; 

mean Nusselt number for constant heat 
flux situation ; 
pressure ; 
Prandtl number, pc,/k ; 
heat transfer rate; 

mean heat transfer rate; 
local wall heat transfer rate; 
temperature ; 

u, 

V, 

W, 

X, 

X, 

Y, 

Y, 

cold wall temperature ; 
hot wall temperature; 
mean temperature; 
velocity component in x-direction; 
dimensionless velocity component in x- 
direction, uB/v; 

velocity component in y-direction ; 
dimensionless velocity component in y- 
direction, vB/v; 

subscript, for wall value; 
independent coordinate in horizontal 
direction ; 
transformed x coordinate, x/B ; 

independent coordinate in vertical 
direction ; 
transformed y coordinate, y/B. 

Greek symbols 

6 thermal diffusivity, k/pc,; 

/A fluid coefficient of cubical expansion ; 

Pt fluid density ; 

Y? ratio q/k ; 

*t stream function; 

Y’, dimensionless stream function, I/J/V; 
0, dimensionless temperature, 

V - T,,,)/(T,., - T,,,); 
isothermal case; 

o’, dimensionless temperature, 

(T - T,,,Wy); 
constant heat flux case; 

w, vorticity ; 

Q, dimensionless vorticity, B’o/v; 

V, kinematic viscosity of fluid; 

K dynamic viscosity of fluid. 
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INTRODUCTION 

THE PRESENT paper pertains to the natural convection 
flow in a right-triangular cavity with a horizontal base 
and heat input through the hypotenuse. The work has 
been motivated by the heat transfer problem as- 
sociated with air-conditioning load calculations for 
pitched roofs with horizontal suspended ceiling. Also 
relevant is the heat transfer problem associated with 
roof-type solar stills and various other engineering 
structures. In spite of its obvious engineering impor- 
tance, this problem has not been given the attention it 
deserves and air-conditioning calculations involving 
such configurations have had to be based on published 
data on pitched roofs with ceilings following the roof 
contours. The present work aims at obtaining the 
various heat and flow parameters for such enclosures 
as described above. Results are presented for the 
laminar-flow regime only with the added simplifi- 
cations that the temperature of the heat source (the 
hypotenuse) is constant or that the heat input rate is 
constant. It has also been assumed that the cavity is 
isosceles-triangular in section so that the common 
boundary, the normal height of the section, can be 
taken as adiabatic. Perhaps the closest configuration 
to the present one is that of the rectangular cavity 
which has been studied by several authors. Theoretical 
investigations of laminar, natural convection in such 
enclosures have been undertaken by several authors 
including Batchelor [l], Elder [2], de Vahl Davis [3] 
and Newell and Schmidt [4] while results of experi- 
mental studies have been published by other investi- 
gators such as Elder [5] and Yin et al. [6]. Pnueli [7] 
examined the thermal instability in confined fluids in 
cylindrical enclosures while Hollands [8] investigated 
that in rectangular enclosures with honeycomb con- 
straint. Comprehensive reviews of various works on 
natural convection in closed cavities have been pub- 
lished by Ostroumov [9], Eckert and Carlson [lo] and 
Wilkes [ll]. In view of the differences in geometry of 
the enclosures and the methods of heat input, the 
results of the above authors do not lend themselves to 
easy interpretation of the processes involved in the 
present problem. 

Physical model 
Before obtaining solutions to the various con- 

servation equations associated with the problem, it is 
essential to define a physical model of the problem. 
Such a model will usually be different from the real 
problem, but the differences should be such as not to 
mask the important physical processes associated with 
the problem. 

The model adopted for the present work is that of a 
2-dim. enclosure with a right triangular cross-section 
(Fig. 1). Fluid motion is set up by heating the 
hypotenuse which may be deemed as representing the 
pitched roof while cooling the horizontal base which in 
turn represents the suspended ceiling. The third side, 
the vertical height, is assumed to be adiabatic and 
hence can be said to represent the boundary between 

the two identical halves of the isosceles triangular 
cavity. Two situations are considered depending on the 
conditions stipulated at the hot wall (the hypotenuse). 
These are 

Case I. The hot wall is isothermal. 
Case II. There is constant heat flux through the hot 

wall. 

For Case (I), the cold wall (the horizontal base) is 
assumed to be isothermal, while for Case (II), constant 
rate of cooling is assumed on this wall. 

ASSUMPTIONS AND GOVERNING EQUATIONS 

The assumptions made for the ensuing analysis are 
as follows : 

(1)The flow is laminar and 2-dim. 
(2) Viscous dissipation can be neglected. 
(3) No internal heat source or sink is involved. 
(4) The fluid is Newtonian. 
(5)Fluid properties are constant except in the 

formulation of the buoyancy term. 
(6) Compressibility effects are negligible. 

From Fig. 1 and by invoking the above assumptions, 
the basic conservation laws of mass, momentum and 
energy can be written in the following dimensionless 
forms : 

Temperature .jield equation 

Vorticity ,jield equation 

Stream function ,jield equation 

l?9 29 
z+w=-n 

Velociry ,jeld equations 

., 
“=$ 

FIG. I. Physical model. 
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Boundary conditions 
Velocities. On all the walls 

CJ, = v, = 0. 

Temperature. On the adiabatic wall 

se 
sx x=* = * 

On the horizontal wall, 

Case (I) (Isothermal) 

Lv = 0 
Case (II) (Constant heat flux): 

de - I ax y=* = constant 

On the inclined wall, 

Case (I) (Isothermal) : 

o,*, = 1 

Case (II) (Constant heat flux): 

difference representation. To achieve this, the entire 
triangular region is divided into a mesh system with 
equal numbers of divisions in the X and Y directions. 
This ensures that the hypotenuse lies on grid in- 
tersections. The finite difference representation is then 
applied to the nodes of the mesh system. 

Central differebce representations are used for equa- 

(6) 
tions (l)-(3), yielding three sets of implicit non-linear 
simultaneous difference equations. In addition, the 
replacement of equations (4) and (5) with central 
difference representations results in two sets of explicit 
equations. The five equations have to be satisfied 
simultaneously by the required solutions. 

Representations for regions adjacent to the walls 
where the condition af/aN = 0 holds are separately 
developed using a method outlined by Newell and 

(8) Schmidt [4]. The representation for the estimates of 
boundary vorticity was similarly treated. Considering 
the inclined wall as an ‘irregular’ boundary, repre- 
sentations for these conditions at this wall are de- 

(9) veloped by making use of direction cosines and ap- 
proximations for normal derivatives on this boundary. 

Nusselt numbers 

(10) 
The energy transported across the horizontal wall is 

expressed in terms of local and mean Nusselt numbers. 
The Nusselt numbers defined for the horizontal wall 
are 

Stream function. From equations (4)-(6) Local Nusselt Number, 

iw aY 

aN,=c?M, ! I = 0. (12) 
Nu,, = * I dY y-0 

(15) 

It follows that Y’, is constant on all walls. Without Mean Nusselt Number, 

any loss of generality, UT, is set to zero 
(16) 

i.e. Y, = 0 (13) 

Vorticity. No explicit boundary conditions can be Case (II) (Constant heat flux) 

specified for R. However, at any step in the iterative Local Nusselt Number, 
process employed in solving the system of equations, 
values of U and V obtained from the solution of 1 de 
equations (4) and (5) are used to estimate fl from the 

NI& = - - I e I I dY Y=O 
(17) 

F,W 
equation relating vorticity and velocity derivatives. In 
dimensionless form, this equation becomes 

R av au 
(14) s--...---_. 

ax aY 

Mean Nusselt Number, 

B s Nu;, dX (18) 
0 

This method has been employed by Aziz and Hellums 
The integrations in equations (16) and (18) were 

[ 123 and Newell and Schmidt [4]. The latter authors 
performed using the Trapezoidal Rule. 

reported that the use of this method results in relatively 
small truncation errors while yielding reasonably 

method of solution of dl~erence equations 
The finite difference representations of normatized 

stabte results. equations (l)-(3) were solved by an iterative scheme 
following a cyclical sequence. First, the representation 

Finite-di$erence representations of the di$erential of equation (1) was solved for 8, treating Cl and V as 
equations known functions. Initially, test values (U = 0 and V 

In order to obtain solutions to the system of = 0) were assigned and the iteration carried out until 
equations by numerical methods, each of the govem- the solution converged subject to the satisfaction of a 
ing differential equations is replaced with its finite convergence criterion. 

Steady laminar free convection in triangular enclosures 993 

Case I (Isothermal) : 
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The second stage involved the solution of equation 
(2) for n, using the values of 0 obtained in the first stage 
and the initial values of U and P’. Initially, an arbitrary 
boundary distribution was used for n. This arbitrary 
distribution was replaced in the next cycle of iteration 
by estimates of fi obtained by using the estimates of U 
and I/ from equation (14). The third stage in the 
iteration involved the solution of the representation of 
equation (3) for Y using the values of R obtained from 
the previous stage. The method of iteration here was 
similar to those of the first two stages, the boundary 
condition used being ‘I’ = 0. 

The explicit representations of equations (4) and (5) 
were finally solved for U and 1/, using the most recently 
obtained Y distribution. 

This completed the first phase of the iterative 
operation. Next, the values obtained in the first 
operation were used to repeat the entire operation for 
the second cycle thus obtaining new distributions for 0, 
Kl, Y etc. The operation was repeated until the desired 
accuracy was achieved. This accuracy was assessed in 
terms of the invariability of each field at the end of two 
successive cycles. For practical purposes, each field 
was considered invariable if the absolute values of the 
difference between field values for two successive cycles 
were less than 10e4. 

The above calculations were carried out for each of 
the two cases described above. 

A Gauss-Seidel iteration routine was used to solve 
the sets of implicit equations and a WATFIV com- 
puter program was written to execute all the required 
calculations. 

For each set of cavity ratio and Grashof number, 
calculations were carried out with the triangular 
region divided into a grid system having equal incre- 
ments in both the X and Y directions. Initially, 
computations were carried out for ten equal incre- 
ments in both the X and Y directions (11 x 11 mesh). 
Subsequently, in order to investigate the validity of the 
solutions, as well as to examine the effect of changing 
mesh sizes, the calculations were repeated for a 17 x 
17 mesh i.e. sixteen equal increments in both the X and 
Y directions. Results in this work have been presented 
from the 17 x 17 mesh. 

FIG. 2. Conditions near point of singularity. 

Point ofsingularity, X = 1 
It will be seen that the point of intersection of the hot 

and cold walls of the triangular enclosure is a point of 
singularity introduced by having different tempera- 
tures on the two intersecting walls. The conditions in 
the neighbourhood of this singularity are illustrated in 
Fig. 2. As this point is approached, the difference 
representation of the derivative (a@/? Y)l, =0 used for 
evaluating the Nusselt numbers in equations (15)-( 18) 
no longer applies near the boundary since there are no 
mesh points near this wall and close to the singularity. 
The use of this representation does not therefore 
permit the limiting value of the Nusselt number to be 
determined as the singularity is approached. 

The method used in the present study to determine 
the limiting value of Nu(,, is similar to that outlined by 
Collatz [14]. By this method, the singularity S** (Fig. 
2) is approached from the hot and cold walls simul- 
taneously along the curve of approach represented by a 
parabolic profile described by a temperature relation 
of the form 

0 = AY* + BY + C (19) 

and passing through the three wall nodes closest to the 
singularity. The constants A, B and C in equation (19) 
are determined by using the values of e(&!:, 0:: and 
0:;) and the corresponding mesh values of Y(0, AY, 
and 2AY respectively, where AY is the mesh spacing in 
the Y-direction) at the three nodes. 

The next step is to solve for a parabolic spatial 
relation of the form 

X=DY’+EY+G (20) 

which also describes the curve, and finding the con- 
stants D, E and G by using the three values of X(X:*, 
XT* and X:*) at the three wall nodes close to the 
singularity along with their corresponding Y values (0, 
AY and 2AY respectively). 

A medial line is now projected from the singularity 
to intersect the curve at a point P** very close to the 
singularity and tending to coincide with it as the mesh 
divisions become progressively smaller. The value of 
Nu(,, at P** is taken to be the required limiting value 
corresponding to the singularity for any given mesh 
system. The medial line can be represented by an 
equation of the form 

X=QY+R (21) 

where Q and R are constants determined by using the 
conditions that Y = 0 when X = B, and X = 0 when 
Y = H/2 (Band H represent the base and the height if 
the cavity respectively). The line and curve make an 
intercept at the position P** at which the value of Y 
makes equations (20) and (21) identical. If this value of 
Y is Y**, then the required limiting value of Nu,, is 
obtained by taking the derivative (ae/aY) of equation 
(19) and substituting Y** into the result of the 
differentiation. 
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The resulting relation is of the form 

de 
Nu** - _ 

(B) - 2” 
= 6Y** + E (22) 

where 6 and E involve the quantities tl,+,*, e,*:, et:, and 
AY, while Y** is the quadratic root involving AY, X:*, 
X:*, B and H and having a value less than AY. 

DISCUSSION 

The results presented are for Pr = 0.733 and for 
Gr,, covering the range 80&64000. The ratios of 
height-base considered are 0.0625 < H/B _< 1. The 
mesh system constructed for finite difference discreti- 
zation consisted of mesh lines that made grid in- 
tersections on the hypotenuse of the triangular region. 
Equal intervals along the X and Y axes were used for 
all the ratios considered. This further implied that the 
total numbers of divisions along the X-axis, Y-axis and 
the inclined wall were always equal for any number of 
mesh divisions. Finally, the system employed made the 
ratio AY/AX equal to H/B for all cases which con- 
siderably simplified computational problems. Results 
obtained for the two cases of isothermal hot hy- 
potenuse and cold base [Case (I)] and constant heat 
input rates on the hypotenuse [Case (II)] show close 
similarities in many aspects. 

An indication of heat transported across the hori- 
zontal base wall of the triangular region is shown in 
Fig. 3. The local Nusselt number Nu,, increases to a 
definite value at the intersection between the base wall 
and the inclined wall. 

The high values of Nu,, near the intersection give an 
indication that a given region within the neigh- 
bourhood of this intersection accounts for more than a 
proportionate amount of heat transported across the 
base wall. This indication is supported by reference to 
Fig. 4 which shows the percentage heat transport for a 
neighborhood length 1, defined as the third of the 

- Isothermal results I 

I I I I 
02 0.4 06 06 

60 

- Isothermal case 

-- Constant heat 
flux case 

60 ==-_ 
------__ 

.\’ 
40 - 

d 

FIG. 4. Neighborhood length energy transport index vs H/B. 

length ofthe base wall nearest the intersection. For this 
length, a neighborhood energy transport index, E,, is 
defined, and is computed by integrating the local 
Nusselt numbers over 1 and expressing this integral as 
a percentage of the integral of Nuo over the entire base 
wall. It is seen that for the cases of H/B ratios 
considered this neighborhood length accounts for 
more than 60% of the heat transported across the base 
wall. 

The practical significance of this result is that the 
heat transported across the base can be most effectively 
extracted by placing a heat extraction device at a 
position very close to the region specified by 1. The 
comparative curve shown for the constant heat flux 
case in Fig. 4 shows only a slight drop in Ek 

-*-.-G~r(~,=4000 
.+.a-. Gr,,,= 16000 

-A--A- Gr,,,=64000 

0 %h+nkFe 05 
H/B 

FIG. 5. Mean Nusselt number vs H/B for isothermal hot wall. FIG. 3. Local Nusselt number vs X. 
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FIG. 6. Mean Nusselt number vs Grashof number. 

An example of the variation of the mean Nusselt 

number %&with H/B is shown in Fig. 5. For a given 
Grashof number, increasing the heists ratio gives 
rise to sharp drops in the amount of heat transported 
across the base wall. This result is to be expected 
because most of the heat transfer across the base wall 
occurs near the intersection between the base and the 
hypotenuse : hence increasing the height of the region 
does little to increase the total heat transferred. It 
follows that in practice, for a given Grashof number 
(characterising the thermal condition imposed on the 
hot wall), the higher the H/B ratio, the less the heat 
trarzsferred across the base wall. 

- Gqg,= 4000, 16000 

--- Gr,,,= 64000 

(al 

(b) 

hc 7(a). isotherms for H/B = 0.25 for isothermal case. (b). 
Isotherms for Hfl3 = 0.25 for constant heat flux case. 

- GqBp 4000 

FIG. 8. Streamlines for H/B = 0.25. 

The variation of the mean Nusseit number $,, 

with Gro is shown in Fig. 6. z,, changes very slightly 
with Gro over most of the ranges of Grashof numbers 
considered. It is observed that these changes are more 
pronounced for higher H/B ratios than for lower 
ratios. 

The effect of Gr,, on the steady state dimensionle~ 
tem~rature distribution 8 is shown in Fig. 7(a). 
Isotherm maps for the entire triangular region for 
which H/B = 0.25 are displayed for three values of 
Gr,,. The isotherms emerge normally from the adia- 
batic wall and converge towards the intersection of the 
hypotenuse and the base wall. At a relatively low GI;, 
of about 4000, the effect ofconvection on the isotherms 
is minimal. When Gr,, is increased to about 16 000, the 
change in the isotherms is hardly noticeable. This 
situation is similar to that of pure conduction. Notice- 
able changes in the isotherms begin to take place only 
for relatively high values of Grashof number. As an 
example, for Gr,, of 64 000, the effect of the adiabatic 
wall extends into the region of the enclosure near the 
central section. The isotherms are pushed towards the 
hot wall for approximately the first quarter of the 
width of the enclosure nearest the adiabatic wall. For 
the remaining distance, the isotherms are pushed 
downward towards the cold wall. This pattern of the 
temperature field bears some similarity to two boun- 
dary layer formations, one growing downward along 
the hot wall, and the other growing upward towards 
the insulated wall along the base wall. The sudden 
depression of the near-middle sections of the iso- 
therms indicates the ~~ibi~ty of separation occurring 
in the primary flow around these sections. Figure 7(b) 
shows corresponding isotherm maps for the constant 
heat flux situation [Case (II)]. Here, isotherms leave as 
normals to the adiabatic wall and end up on the 
inclined wall. An indication of the sensitivity of the 
stream lines to changes in the Grashof number is 
shown in Fig. 8. Stream-lines of specified strength tend 
to recede towards the walls of the enclosure as Gr,, is 
raised. It is observed that stream-lines of relatively 
greater strengths are centred around that portion of 
the enclosure where the sudden depressions of iso- 
therms occur. 

In order to obtain a correlation between Nu,,, Gr(,, 
and H/B, sets of 3-dim., linear, logarithmic simul- 
taneous equations were solved by making use of Fig. 5 
for an expression of the form 
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- 
Nu,, = c[Gr& [H/B]“. 

The above form was obtained from a dimensional 
analysis using the concepts of Vector Lengths. The 
resulting expression is 

- 
Nu Cs) = 1.102 [Gro]0.535 [H/B]-‘.19 

This correlation holds reasonably well for H/B ratios 
of 0.0625 < H/B I 0.25 and Grashof numbers over the 
range 4000 I Gr,, _ < 64000. This result shows the 
high influence of the parameter H/B and the lesser 

influence of Gro on NY,, for equivalent changes in the 
two parameters, a deduction which has already been 
mentioned from other observations. 

For a proper evaluation of the results presented, an 
investigation was made of the effect of changing grid 
sizes on the numerical solutions. Newell and Schmidt 
[4] and Azis and Hellums [12] have noted that 
refinement of grid sizes tends to cause changes in the 
Nusselt number. For example, in going from 11 x 11 
mesh to 41 x 41 mesh, Azis and Hellums reported a 
change of 40% in the Nusselt number. 

The present work tends to agree with the assertion 
of Newell and Schmidt that, among other things, the 
mesh size and the order of the finite difference approxi- 
mation significantly influence the accuracy of the 
Nusselt numbers. In this work, it was observed that in 
going from 11 x 11 mesh to 17 x 17 mesh there was an 
increase of about 11% in the value of the Nusselt 
number. The refinement of grid sizes also tended to 
increase the number of iterations required to achieve 
convergence for each field. 

CONCLUSIONS 

Analysis has been carried out for heat transfer by 
steady, laminar, free convection in a triangular en- 
closure. It has been found that a considerable pro- 
portion of the heat transfer across the base wall of the 
region takes place near the intersection of the base and 
the hypotenuse. The relationship between the mean - 
Nusselt number, Nu,,, the Grashofnumber, Gr,,, and 
the height-base ratio, H/B, is such that for equivalent 

changes in Gro and HfB, the influence of H/B is the 
considerably higher factor. The two cases examined, 
namely isothermal hot wall and constant heat flux 
situations, show close similarities in several respects. 
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TRANSFERT THERMIQUE PAR CONVECTION NATURELLE PERMANENTE DANS DES 
ENCEINTES TRIANGULAIRES 

I I 
v etudie par voie num&ique la convection naturelle bidimensionnelle, laminaire dans l’air con- 
tenu dans une enceinte longue, horizontale a section droite en triangle rectangle. Des solutions permanentes 
sont obtenues pour des rapports hauteur sur base. 40625 6 H/B Q 1,O et pour un nombre de Grashof 
800 i Gr,,, < 64 000. LAX rtsultats montrent que le transfert thermique d travers la base augmente vers l’arete 
commune a I’hypotenuse et la base, si bien que le tiers de la base vers atte arete compte pour 60% de la 
chaleur totale transferee. Les resultats sont bien represent& par: 

%(a, = 1,102[Gr~~“~os35 [H/B]-‘.19 

pour 0.0625 d H/B C 425. 



998 V. A. AKINSETF and T. A. COLEMAN 

WARMETRANSPORT BE1 STATIONARER LAMINARER FREIER KONVEKTION IN 
DREIECKIGEN HOHLRAUMEN 

Zusammenfassung-Es wurde zweidimensionale laminare freie Konvektion in Luft numerisch untersucht, 
die in einem langen, horizontalen, rechtwinklig-dreieckigen Hohlraum eingeschlossen ist. LGsungen fiir den 
stationlren Zustand wurden fiir Verhlltnisse von HGhe zu Grundseite im Bereich von 0,0625 4 H/B < 1,O 
und Grashof-Zahlen im Bereich von 800 < Gr (B, C 64 000 erhalten. Die Ergebnisse zeigen eine Zunahme des 
Wlrmetransports durch die Wand der Grundseite zum Schnittpunkt von Hypotenuse und Grundseite hin, 
so dal3das dem Schnittpunkt niichstliegende Drittel der Grundseitenltige mit 60% zu der an der Grundseite 
iibertragenen W&me heitrbgt. Fiir den Bereich von 0,0625 < H/B < 0,25 werden die Ergebnisse gut 
korreliert durch die Gleichung 

z,&, = 1,102 [Gr,B,]0.“535 [H/B]-'.'9. 

TEIUIOIIEPEHOC nPkl CTAIJMOHAPHOti JIAMAHAPHOR CBO6OaHOti 
KOHBEKIQIM B TPEYrOJIbHbIX l-IOJ-IOCTIiX 

Atmwamm - %cneHHbmiu MeToAabwi wccneAyeTca AsyMepHan naMmiapHan cBo6omias KoHneKuH* 
B conepxaureii B03AyXAJIli~~0ii rOpH30HTaJIbHOii nonocTu,mteEo~efi ce4eHkie B @opMe npXMOyrOAb- 

HOrO TpyrOAbHHKa. nOJly'ieHb1 CTaUHOHapHbIe peUIeHkiR AJIK OTHOLUeHHfi BbICOTbI TpeyrOAbHHKa K 

ocHonaHmo B AHana3oHe 0,0625 2 H/B S I,0 npw 3HaqeHmx wcna rpacro@a 800 s Gro,<64000. 
PesynbTaTbI noKa3bma~T. 4To nnoTHocTb TennoBoro noToKa vepe3 0cHonamie Bo3pacTaeT no Ha- 

npaBJleHHi0 K MCCTY IRpCXWIeHHtl rWIOTeHy3bI C OCHOBaHUeM,TaK '1TO 'lepe3 TpeTb AJIPiHbI OCHOBBHWR, 

paCnOnOEeHHOfi B03ne nepeceseHti%, npOXOAHT npHMepH0 60% Tenna, nepeHocuMor0 vepes we 

OCHOBSIHtie. Pe3yJIbTaTbI XOpOUIO OnWbIBWOTCR COOTHOmeHWeM 

NU ,Bb = 1,102[Gr,B,]o.0535[H/B]-1.19 

~PH 0,0625 5 H/B s 0,25. 


